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wheré the indicator function changes value. A search algorithm
is preseated for classifving the constraints and a method is pre-
sented for determining a "best" constraint from the class.
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Constraint Classification On the Unit Hypercube.

Abstract

This paper shows that there is a finite set of eguivalence classes
for constraints in the O-I)programming problem. These equivalence
classes have the property that exactly the same set of solutions are

feasible for all constraints in the equivalence class, It is shown that

these classes are determined by the relationship of the constraint to the

dual of the hypercube. A function that indicates feasibility of 01 points

is defined and is shown to be monotone over a vector partial ordering associated
with the constraint and paired vertices of the hypercube. This allows for deter-
mination of equivalence classes based on identifying where the indicator function
changes value. A search algorithm is presented for classifying the cone-
straints and a method is presented for determining a "best" constraint

from the class,




I. Preliminaries

Lzt us consider two constraints Eaix; 2b and Ea!lxi =h!
where x; =0,1 Vi, It is obvious that while a = (al, . .an) and
al = (a'l, .o a;) may be outwardly quite different,they may be redundant
in the sense that the feasible sets for both constraints may be the same.
This then raises the questions of how do we recognize these constraints,
how many non-redundant constraints exist and how does onée construct or

choose "best'' constraints from a redundant set. BRalas and Jeroslow | 4) have

approached the first question by the use of canonical constraints. The qués-
tion of choosing "best" constraints has beea discussed Kianfar {[7] and to some

degree by Bowman and Nemhauser [6]. This paper addresses itself to all these

questions and provides a means of classifying constraints into equivalence

classes based on their feasible sets and then choosing a '"best'' constraint

from these sets. In order to facilitate discussion we shall work with

variables, x, that have been translated by 1/2e, e =(1,...,1)! from the

x! space i.e. x'= *c + 1/2e. This translatés 0, 1 values of x' into

-1/2, +1/2 values of x. Consequently, the origin in the x space is the
center of the hypercube whose vertices are the 0, 1 solutions desired,. We
also note that any constraint Dax, 2 b"-l/ZEai. In succeeding discussions
we will be working only in the x space and thus right hand side values of

the constraints wiil be for those after the translation into the x space, i.e.,

b = b"" 1/22310

O U e g e o T W




———

Let K denote the unit hypercube,

B the minimum ball containing

K, and C the minimum octahedron containing K, i.e.,

K

[x' -1/2esxs+1/2e),

2 n
= s =
B {x‘ ¥ X, y 1,

i=1
n

c = [x‘ T x| s 2.
i=1

For a detailed discussion of these sets in relationship to integer pro-
gramming, see [ 1,2,3],
If we denote by bd(C) the boundary of the set C, the vertices

of the hypercube can be deccribed as 1) bd(K)¥¥bd(B), 2) bd(K)Nbd(C)

or 3) bd(B)Nbd(C).

We note that the octahedron H is the intersection of Zn half-

spaces

L6x. $n/2 6.=+1 (H
ii i

and that these defining hyperplanes are tangent to B at the vertices of
K.

Now consider a hyperplane ax =b intersecting B. If we now
construct all tangent planes to B at the intersection 'A‘:aixi = b we form
a displaced cone with vertex v at the intersection of the normal to

Xaixi = b and the tangent hyperplanes i.e., v =Aa where A =-;—1-
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In projective geometry, v is the pole of the polar set ax <b with respect
to the conic B. We shall therefore refer to v as a pole. When referring
to the pole of a particular constraint ax 2b we shall use the notation v
is the pole of (a,b). For other uses of poles and polar sets in integer
programming see [2]. It is the pole v and its relationship to the ex-

tended -facets of C that will determine the equivalence class of a constraiat,

We note that if b= 0 tken A = @ and the tangent planes form a
hypercylinder (i.e., have . pole at infinity). This occurs only when
ax = b bisects B, that.fs;passes through the origin, x=0. When b#0
the pole v may lie in either the feasible closed halfspace ax 2 b called H'
or the infeasible open halfspace ax <b called H . One may consider

the problem of choosing a "best" constraint as ""pushing" the constraint

away from v when v € H™ or '"pulling' the constraint towards v when

v ‘H—‘.o

2, Equivalence Classes

Let us now consider the 2" hyperplanes (1) that are the extended

facets of C. We note that these facets occur in parallel pairs, i.e.,

Z8x, < n/2 (2a)
i3

and z (-‘Si)xi < n/2 (2b)

are parallel, There are obviously Zn'} of these parallel pairs. Every
set of the parallel pairs partition R” into 3 sectors i.e. . feasible to

(2a) but not (2b), feasible to (2a) and (2b) and feasible to (2b) but not (2a).
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The relationship of the pole of a constraint to the parallel pairs (2a) and

(2b} will be fundamental to the establishment of equivalence classes on
the constraints. In order to discuss pairs we shall need a unique designator

for each pair. Let b be the unique designator of the parallel pair 8 and

~-8. For uniqueness 6 = (61, -52, ces ’En) has the property 2.51 20
and if E-ﬁ-i =0 then -6-1 = -1, We now wish to establish an indicator
that relates the feasibility of the pole v of (a,b) to the constraints {2a)
and (2b). This function will be defined over the 2n~1 parallel pairs

denoted by 6.

Let r(v,.ﬁ-) be a function on parallel nairs and v the pole of

(a, b) that exhibits the following properties:

/,1 if £Bv.> =
ii 2

1 if £6.v.= 2 and v€H+
ii 2

0 if E-g_v. =2 and veH”
i'i 2

T'tv,8) =4 o if R IR

i1

0 if £8.v.=-2 and veH™
11 2

-1 if 23.\’.:-2 and v€H+
ii 2
L-l if T0.v, <-2
14 2

(v, 3) describes in which of the three partitions the point v lies. We

thus have the following Lemima.,

Lemma 1:  The extended facets of the octahedron C partition R” into

zn-l

3 segments.
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Proof: There are 2n—-l parallel pairs 5 and any point v is mapped into

one of the three possible values under I'(v, 5) depending on where v lies

in relation to the partition of R" by the pair 5. There are Zn'l such

mappings for a given v.

We now investigate the relationship of the pole v

of the hyperplane ax = b, to feasible vertices of K in the halfspace ax zb,

Since
{
the pole v is said to have A= = for b =0, we extend our definition of

T to include these values.

1 if ab<0
T®8) = 0 if ab=0

-1 if ad>0.

Recall that 1/23 and -1/2-5- are vertices of K, i.e., solutions to our
problem. The following Lemma relates the feasibility of these vertices
to the function I‘(v,g).

Lemma 2: Let ax 2b have a pole v then

if b>0

a) 1/2 8 is feasible if and only if T'(v, 5) = +1

b)-1/2 § is feasible if and only if I'(v, §) = -1

if b<0

c) 1/2 8is ifeasible if and only if T'(v, §)=1

d) -1/2 8is infeasible if and only if I'(v, §) = -1

and if b=0

e} 1/2 Bis infeasible if and only if T'(=, 8) = 1 i.e., ab<0

f) ~1/2 8is infeasible if and only if I(®, §) = -1i.,e., ab>0
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Proof:

a) Assume 1/2 8 is feasible, then 1/2822b or multiplying by I

2b
we have Z}-;aﬁ 2 ~£ or vd 2 %. Since b > Q then v€H+ and thus
= 5 = 71 I R P ]
T(v,5)=1. Nowlet I'(v, §) =1 then vb=2 5 °F T ab2 > o
1/2a6 20, The proof of(b) is similar.

To prove (c) let 1/2 8§ be infeasible then a(1/2 §) <b or multiplying

by ;:g <0 we get ( )a §>2 andthus (v, 5) =1, Now assume

2
that I(v,8) = 1. Since b<0 then v€H  and we have (z%)aa >-§

and consequently 1/2 ab<hb. Again the proof of (d) is similar to that of
(c). To prove (e) assume 1/2 6 is infeasible then 4(1/2)3 <0 or
ad < 0. Likewiseif ad <0 then 1/2ad < 0. Again the proof
of (f) is similar to that of (e).
We -have thus shown that we can use the location of the pole.

of (a,b}to yield information about feasible and infeasible vertices of K

with respect to ax 2 b,

Definition, We say that two constraints (a, b) and (a', b') are in

the same equivalence class E, if the set of feasible vertices of K are

the same for both (a, b) and (a’', b').

We denote (a, b) in equivalence class E by (a, b} €E.

n-1 n-1

Theorem 1, There are (2-32 -2 } equivalence classes for

constraints in an n-dimensional hypercube,

Proof: From Lemma 2 we can classify opposite noints 1/2 § and

-1/28 by the function T, Thus




a) 1/28 and -1/28 are both feasible if and only if bS50
and I'{v, 8) =0
b) 1/28 is feasible and -1/28 are infeasible if and only if

1) >0 aad I(v,d) =1

or 2) bs0 and I‘(v,s)---'-l

¢) 1/28 is infeasible and -1/28 is feasible if and only if
1) b>0 and I(v, ) = -1

or 2) b0 and I(v, 0) =1

e e T T e e
X i

d) 1/28 and -1/28 are both infeasible if and only if

b>0 and I(v,0)=0

ERHR R D R

We first note that there are 3 values of T(v, 5) for each of the

211- 1

i P

parallel pairs 6 and that the feasible sets differ with the sign of b (that is

™

A

bs0 orb>0)., Thus an upper bound on the number of equivalence
n-1
classes is 2(3 ). However (b) and (c) above indicate that different
n-1
elements of these 2(3 ) potential classes are the same. In particular

e A SRR AL AR AN ANl
b

o
T
’r’n T Uiy

A Ao B0

if v, 3) = +1 then changes of the sign of I' and b produce the

n-l
same equivalence class. Thus, since there are 2 ways of assigaing

GRS v e R L
p " 2

" 4 (v, 3) =+1 for all § and 2 ways u. assigning the sign of b, there

is a totality of 22+
3 : y of thes tial classes of which 1/2 are

| 3 the same i.e., the change of sign of I" and b. Thus from the total
E set of potential classes we musi subtract those that are redundant. This

yields

t 2(3 ) - 2 equivalence classes.
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It is obvious that these equivalence classes can be determined by

just observing the values of IT' and b as outlined in (a) through (d)
of the above prcof.

Example 1: Let us consider the possible equivalence clagses in a two
dimensional space. There are four vertices of K which we denote

U X, Y, Z. Welet U= (-1/2,-1/2), X=1(1/2,1/2), Y =(-1/2,1/2)
and Z = (1/2, -1/2) thus these correspond to the following 0-1 points

before translation of axis. U'= (0, 0), X'= (1, 1), Y'= (0, 1) and Z*= (1, 0).

Let 31 =(1,1) and 32 = (-1,1) then U, X represent the vertices

classifiable by I‘(v.-b- 1), and Y and Z the vertices classifiable by

T(v,-ﬁ-z). The number of possible equivalence classes is determined from
2

Theorem 1. There are 2n~1 = 2 pairs of vertices and thus 2 32 -2" =14

possible equivalence classes. These are as follows

b (v, 31) (v, 52) feasible vertices
1) £0 0 0 U X Y Z
2) $0 0 -1 U, X, Y
3) $0 0 1 U, X, 2
4) <0 -1 0 X, 2z, Y
5) =0 1 0 U,2Z,Y
<0 -1 -1
<0 -1 1
7) {,0 ) 1} {x, z}
s0 1 -1
8 . {5 -1 1} {u. v}
! <0 1 1
9 {,0 B _1} {u, 2}
10) >0 0 0 none
11) >0 0 -1 z
12) >0 0 1 Y
13) >0 -1 0 U
14) >0 1 0 X
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One should note that the number of quivalénce classes grows quite '

rapidly as shown below : ' . . . i

. + 1)
s

Jui v 4
% 5 xS A A AR H )
L A P R ¥

n 2 3 .. 4 5

Equivalence classes' 14 ‘146 12866 86,027,906 ,

[y
H

§

While we have been able to classify constraints into equivalence
H § f

: ! T, : . nel
classes by Theorem 1, for any given constraint we must calculate 2 .

3

functions I'(x, 3} . to determine this clasdification. Although this is not

1 . I 1

equivalent to enumerating all of the verticles of the hypercube, it i.g
. ' ' 3 H '
equivalent to enumerating half of the vertices. In thé next section we

i

l t w

3

investigate a partial ordering that exists on the éxtended ‘facets of C ) .
1 . H * . *

and from this derive an efficient search algoritﬁm for determining the i
3

appropriate equivalence!class. In addition this partial orderiﬁg ’suiggest'a ) : '

1 . * f H . * :

a simple method of deriving other constraints in the equivalence class 3

. L] H H 15

H

- 1
that are "better'. o pe ! : 1

AT 1] P e A

AL R

i dniitioy
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3, Calculations of I'(-, *)

If we observe that the hypercube may be rotated and the axes
relabeled we can assume without loss of generality that ax 2b has the
property 0 < a, s a, S...8 a . Since the 8 for paired hyperpianes has
the property Zﬁi 20 we conclude that at most [PZ-] of the 6, can be negative

s ([x] is the greatest integer < x). We can thus describe § in terms of

the negative elements of 5.
J letk = [n/2], p= (pl,...,pk) be a k~dimensional vector, and k" (%)
. be the number of negative elements of §. With every § we shall associate
-a unique vector p(g) that has the following properties:
a) 0<p; Spy=Seee 2P
b) if Py # 0, then P, <Py

3.1)

c) p1= Pz = eee = pk.k.(g) = 0.

. d &, =-1 if and only if Py = i for some j.

Property (d) establishes the relationship for identifying 5 given p(g),

i.e.4 p(g) is a list of the indices of the negative elements of §. The

uniqueness of p(g) is established by properties of (a), (b) and (c). For-
1

notational convenience, we shall use the notation p for p(E).

Example 2: For n=5 k=2 some examples of associated p are

‘ =, 1,1,1,1 p = (0, 0)
= (-1, 1, 1: 1, 1) P = (09 l)
= (10 ‘lv l: "l: 1) P = (2, 4)




1l

The p values introduce a vector partial ordering where p 2 p' if and
only if p, 2 p;_ for all i, If strict inequality must hold in at least one
component we write p > p'. This partial ordering is important with res-
pect to the indicator function I'(*,+); thus, in order to maintain notational

consistency, we define a function H(p,v) as follows:

Definition: H(p;v) = ['(v, %) where p is the vector.: ass;)ciated with 8.

Definition: Two vectors p < p* are adjaceat if 'pj = pg for § # i and

p*s p + 1.

We can now est:ablz.sh an important monotonicity relation.on the function H.

- P

Theorem 2: If p < p' then H(p;v) > H(p';V) for b > 0 and H(p;V) éH(P sv) for

b < 0.

Proof: Consider p and p* such that p < p* and p* is adjacent to p. let

p* = pgt 1. The condition p < p* and property (a) of (3.1)

pj ¥ Py + 1 for any j since otheérwise,the number of non-zero values p*
would be one less than that of p by property (b) of (3.1). We also note
that H(p;v) > H(p*;v) if and only if

n

o
> > o 13 . = . = ha
t516t(p)vt > cilst(p )vt Let P, =q Then if q = 0, we have

n
x E § L(PDa = «A a, + Xz 6. (p)a,
t=1 t=2

and

=
=

lci‘l 5t(p)a =Xa, + N> s (Ma .

Since a, 2 > 0, then H(p;v) 2> H(p*;v) if X >0 i.e., b >0 and H(p;V) S H(p*;v)

if A <0 i.e., b <O0.

Now if q # O then

n
An 6 (p*)a =X £ 6 _(p)a_ - Aa -a)
t=1 t t#q,q+l ¢ t a+l 1

and

.

e B
S vk

2
S
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n
AZ 6, (p)a =AZ 8.(p)a +Aa -a)
-1 t t t#q,q+l+ t qt+l q

S

Since aq_‘-1 - aq 2 0 by assumption then H(p; v) 2 H(p*; v) if A>0

ice. b>0 and H(p;v) SH(p*, v) if A<0 i.e. bSO,

LY

We now need to show that for any p < p', p' can be réached by a

(o Ll g S e b
e et ot sl SN i

path through adjacent vectors. Let P = 4 and pl'( = q+ r., Then let

p°=p and p°5p1 £ Spr where pli( = p;-l +1 for i=1,.0e,
and p; = p;-]' for j # k. This establishes montonicity of H on p© through

pzj by tha above proof on adjacent vectors pi' -and _pi+1

. Also, p* <p'. We now
take index k-1 and perform the same operation and continue with index k=2, k<3,
seey 1 and thus have p < po <p' L eee £ p. = p' where _pi.]' and pi differ by

only one element. Thus, the monotonicity property is preserved and the theorem
is proved. - T

Theorem 2 prcvides the basis for calculating the I'(v, 8) bya

search algorithm. Note that by the theorem one has only to calculate the

vectors p where the function H changes value. Thus, if H(p) = 1 and

H(p*) = 0 with p and p* adjacent and b > 0, we have H(p') = 1 for

p' < p and H(p') = 0 or-~1 for p' > p*, Thus, if we describe

A A, 1 2
MR i

; the set of p where H changes values wé coupletely describe the function I’

and thus the equivalence class in which (a,b) exists. Towards this end,

we define the following sets that characterize these points and thus,

P
A .MﬂE‘}

x!iill‘}i w‘ "'41]’ § Jlls}" ’. ;‘Rl‘j‘ LI;‘\. s

R ; A

the equivalence class.
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If bsS 0 then

Pt = {P|Hpsv) = 1 and H(p'iv) = 0 or ~, pt < p)

P - {p|H(p;v) = 0 or -1 and H(p'3v) = +1 for p' > p}
P0-= {pIH(p;v) = 0 or +1 and H(p';v) = ~1 for p' < p}
and P = {le(p;v) = -1 and H(phv) = 0or 1, p' > p}

and if b >0 then

P’ = (p|H(p;v) = 1 and H(p'sv) = 0 or 1, p' 2 p)
po+= {le(p;v) =0 or ~1 and H(p';v) = +1 p' < p}
P~ = {p|H(psv) =0 or +1 and H(p'3v) = -1 p' > p}
and P = [p|Hlp;v) = -1 and H(p'v) = 0or 1p* <p}

From Lemma 2, the sets P+ and P provide characterizatiod of the feas=
ible points as follows:
a) 1/25 and -1/2% are both feasible if and only if b X0 and
for some p' € P  and some p" € P+, p' <p(8) <p". (3.2a)
b) 1/28 is feasible and -1/28 is infeasible if and only if either
1) b >0 and for some p' € B p(8) < p' (3.2b)
or
2) b <0 and for some p' € P p(®) <p'.
¢) 1/28 is infeasible and =-1/2§ is feasible if and only if either
1) b >0 and for some p*' € 2~ p(8) 2 p' (3.2¢)
or

2) b <0and for some p' € B p(8) >p'.
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d) 1/28 aad -1/25 are both infeasible if and only 1f b > 0 and for some
p' € B and p" € P”

p' <p(d) <p". (3.24)

The sets P0+ and Po' are used in the algorithm of the next section to dee
termine P+ and P~ and will be used to generate linear constraints des-

cribing the appropriate equivalence class in Section 5.

Example 3: Consider the constraint

St

S -
2x1+4x2+5x3+7x4+8x5 4

There are 16 possible vectors p. The pole is v =-5/16(2, 4, 5,7, 8)

and the values of H are as follows:

RN saoa iy stk s

kbt

P §(p)v H(p, v) P 6(p)v H(p, v) |
00 -6—85 -1 14 -%‘l 0
01 --%5- -1 15 -38-5- 0
02 --‘% -1 23 --%(—’ 0
03 2 -1 24 -—15‘1 0
04 -189 -1 25 -2 0
05 --2-55- -1 34 -% 0
12 --3§ -1 35 0 0

13 -2 -1 45 2 0

Now we observe that H(0,5;v) = -1 implies H(0,t;v) = -1 for

t =0,1...,5 and H(1,5;v) = 0 implies H(j,5:v) =0, or 1 for

j=1, 2,3, 4, and since H(4,5;v) = 0 then these are all zero. Since

5 H(1,4;v) = 0 and H(4,5;v) = 0 then H(1,35;v) = 0 and we can classify




all of the values by H(0,5) = =1, H(1,3) = =1, H(1,4) = 0 and H(2,3) = 0.

Alternatively, we have P~ = {(0,5), (1,3)], Po

=g,

= {(1,8), (2,9}, 2% =

S e
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In the next section we describe an algorithm for finding the sets
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4. An Algorithm

In this section wé present a method for determining the sets P+,
Po", PO- and P°. The method determines elements in one set and then
insures that all adjacent elements are dominated (in a partial ordered
sense) by the elements of one of the sets. In the algorithm, we shall
be interested in those adjacent vectors that are either greater than or

less than a particular vector. Towards this end we use the following

notation. The vectors adjacent to p' will be denoted as pi(j) j= 1:---»“;

and pi(j) j= 1,...,ni where pi(j) < p* for all j and pé(j) > p' for
all j. Thus, the pi(j) are the adjacent vectors to p' that are less
than p' in partial ordering and pi( j) are the adjacent vectors that are
greater than p'.

In addition, since the monotenicity of H(pjv) is reversed for rever-
sal of the sign of b the algorithm is expressed for b > 0 with changes
for b < 0 designated in brackets. Finally, since we are constructing
sets, we use + and - to denote the additicon and subtraction of elements

from sets.
Step0: BT =¥ =p =g, T =1 =1 =17 = 4.
Step 1: 1Initial Search: Search an ordered chain from p = (000,...,0) to

p= (pl,...,n-l,n), where Py = n=kel if n is odd and p,= 1 if n is even. Let

1
p* be the maximum element such that H(p*,v) = 1 [H(p*,v) = ~1] and p** be
the minimum element such that H(a%¥,v) = =1 [H(p¥*,v) = +1). -Let T' = {p*}
(1" = {p*}] and T = {pr} I = PRl

Remark: It is possible that p* and p** may not exist. In this case, the

appropriate set is left null. While any ordered chain may be used, a

e L5 o R T S T RS M
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convenient one is (00,...0,§) 3 = 0,1,e0.50 § (000,.0.,0,3,0) j = l,eee,n=1 }
(000y00.,0,3,0=1,n) j= 1,i00,0=2 , ggc.
Step 2: 1If T = # go to Step 3; otherwise, select any p' € ™ and T =

T < {p'].

2a: If p' <p [p'>p] for any p € P+, go to Step 2; otherwise,

j=1go to 2b.

2b: If H(py(3)sv) = 1 [H(p (3)3v) = L], let p' = po(d) [p' = pi(D1]
go to 2a;
otherwise, j = j+ 1 and go to 2¢,

2c: 1f j > n; ij> ni] g0 to 2d; otherwise, go to 2b.

2a: B = 24 {0}, 1 = 1™ 4 (IDT 4 oo+ (B)(a)]
i = 2% 4 {pi(l)} + oo+ {p;_(ni)N- Go to 2.
0+

Step 3: IfT = @, go to step &,

Otherwise, salect aay p' € 1 ana T = 1% - {p'l. i
3a: If p' >p [p' <p) for any p € P0+, go to step 3.

Otherwise, j = 1, go to 3b,
3b: 1If H(Pi(j)tv) = 0 or ‘I[H(pé(j);v) = 0 or «1] let p' =

pi(j)[p' = pz(j)] go to 3a; Otherwise, j = j + 1 and go to 3c.

3c: If §> ni {(j> ué] go to 3d;

5]
2%

Otherwise, go to 3b,

bt Tt

O+ O+ + + %ﬁe;
3a: BT =P+ {p'l, T =T + {p](D} + ... + {py(a])} g
It = + [Pl + -0 + {pj(a}1. Go to 2. e &
- i&, :
Remark: Upon entering step 4 we have determined the sets ?+ and P°+. i}
0 o

*

Step 4 and 5 are analogous to Step 2 and 3 and determine P and P,

"uk\"

B
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Step 4: IfT = @, go to Step 5; Otherwise, select any p' € T and
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4a: If p' >p [p' <p] for any p € P", go to Step 4; Otherwise,
j=1, go to 4b.

4b: 1If H(Pi(i)?V) = -1 [H(Pé(j)EV) = =1] let p' = Pi(j) (p' = Pi(j)]
g0 to 4a; Otherwise, j = j + 1 and go to 4c.

be: If § > ni i > né] g0 to 4d; Otherwise, go to 4b.

4d: P =P 4 {p'}, Tob = To' + {pi(l)} + eee + {pi(ni)} [To- =

To'~+ {pi(l)} + oo + {pé(né)}]. Go to 4.

Step 5: 1If To- = @ stop; Otherwise, select any p' € To- and let To. =

7 - {o'}.
5a: If p' <p [p' > pl for any p € Po', g0 to Step 5: Otherwise,

Jj=1. Go to 5b.

s

5b: If H(pé(j)‘,v) = 0 or +1 [H(pi(j) 3v) = 0 or +1], let p* = p;_(j)
{p' = pi(j)]. Go to 5a; Otherwise, j = j+ 1 and go to Sc.

Se: If j > né {j> ni], go to 2d; Otherwise go to 5b.

sa: P07 = 0" 4 {p*}, T =T + M1+ ..+ {py(a)} (17 =
T + {pi(l)} + see #, {pi(ni)}]. Go to 4.

In the next section, we discuss a possible application of equivalence

classes to determine a "best" constraint for the equivalence classes,

it peiRe L “ \I!: 1
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5. Generating Constraints from Equivalence Classes

Let us now suppose that we have an equivalence class as represented

) o+ -
by the sets P° and P . A question then arises as to what

RS N g

constraint(s) should we use to represent this equivalence class and how

RS My

can they be obtained. We represent our new constraint as
L N ] > L4
lel + s2x2 + + ann - B0

Since H(pjv) is a function after both rotation and permutation of the

axis have been eliminated we have the additional conditions

0<B SBy ees SB.

Ia addition, we also know that the class is determined by the sats B
and P~ of the fuaction H(p;v). We therefore, construzt a set
of linear constraiats using these sets and Pm and Po-

From the sets P+, Pm-, Po‘ and P and (3.2) we have the fcllowing

conditions:

If b <0 then

-1/25(p)8 < By = 1/2 for p€F (5.1a)
1/26(p)B < By - /2 for pEF (5.1b)

-1/25(p)B 2 B, for p € PO (5.1¢)

1/25()8 2 B, for p <% (5.1d)

and if b > 0 then

-1/26(p)B = 8, for p €P (5.1e)

1/25(p)8 > 8, for p € B (5.1f)

-1/28(p)B < BO -1/2 for pE€ PO" (5.18)

1/26(p)B < B, - 1/2 for pé€P (5.1h)
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These conditions come directly frowm Lemma 2, Weé note tha“ P and
Po. are those pointsg that are adjacent in the sense that if b <0, -1/26(p)
is feasible for p € Po- while =1/26(p) is infeasible ‘for p € . This
fact is reflected in statements(5.lc) and (5.1la). We use Bo- 1/2 for
infeasibility since this translates back to aé <« 1 (i.e., integer r.h.s.)
indicating infeasibility in the x® (zero=one) space., The linear con-
straints (5.1) have the property that all B = (ﬁo,Bl,...,Bn) satisfying
them belong to the same equivalence class and any P that does not satisfy
these coanstraints does not belong te.the same equivalence class
as the constraint (ax > b) from which the sets ?*,P‘ were derived.

The criteria of choosing a "best" constraiant from the set of solu-
tions to the linear constraints will of course depend on the definition
of the term "best"., We propose that one meganingfu] definition is that
B provides a best constraint if the member of binding (equality) con=-
straints for the defining linear inequalities (5.1) is as large as
poszible. F;om linear programming theory we know that these conditions
correspondé-:o generating basic feasible solutions for tﬁe constraiats
(5.1), where the number of non-basic slacks is as large as possible.
This immediately implies that there may be several 'best" constraints
since there may be several such basic solutions. However, they all
possess the property that a slight pertubation of a coefficieat either
makes one of the defining equalities non~binding or makes B no longer
satisfying the constraint set. It should also be noted that there are
ntl variables in (5.1)., While this may seem disconcerting
since we need only n points to determine a hyperplane in n space, it is a

result of our defianition of an infesible point as being at least 1 uanit




e T e e R e R e e

s B _@g@%ﬁﬁ%?’%ﬂ% P R
B b o=y vi== = WU L A < = g AR z e -

o AT e e S T

length away from the coastraint in terms of the right-hand side. One

may invision this process as choosing n points to deteruine the hyper-

plane and then one additional point so that a displacement of the hypere

plane by one unit (in the x' space) will pass thlirough an infeasible point,

see (5.1la,b,g or h).

[t g
.
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Remark: NN ' [
¢k,
We nqge‘_that the constraint (5.1) can be translated back to the x' space g

since x,; = -1/2 implies x; =0 and x, = 1/2 implies x; = 1, Since this

reduces the number of non-zero coefficients in the constraint set pro-

duced, we propose that this should be used. ’ ¥
Example 4: §
Let us now consider the constraint of Example 3. 1In that ~xample %
we had P°F = B" = @, and P~ = [(0,5), (1,3)] and P = [(1,4),(2,3)1.
- The constraints from (5.1) are thus, »
| ELEE
B+ B S8t
B, + 8, = By (5.2)
By * B 28

AR

The first constraint comes from the fact that p = (0,5) implies § = (1,1,1,

A
<

<
K=

- - %3 i ‘x? = Ve ot ooyt o ot
1,-1) and since =1/28 is infeasible, then x =1, % = x) = x] x, 0
is infeasible. The other coastraints are derived similarly.

We also note that we can change variables and eliminate the con-
straints 0 < 81 < 52 < 63 < 84 < 85. Let y, = 81 ard y, = Bi - ai-l

for 1 22 theny, > 0 implies Bi 2 B, thus, (5.2) reduces to Iinding a

e e 2B
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solution to

.-

2y1-%-y2-!-y3 _<_B(')-1
2y, + ¥, t ¥+, 2 8,
2y1 +2y2+ Y3 256

y; 20

Solving this set of constraints we find that Yy = 1, y, = 1, y3 = o,
Yy = 1, Yg = 0, Bé = 4 is a basic feasible solution (and the only

basic feasible solution). This yields the constraiat xi + in
3x, + 3x; 2 4. It is easy to check that this is from the same equiva-

'
+ 2*3

lence class as the original constraint.

Remarks: 1) The equations (5.1) indicate that the flexibility of
"moving" constraints and maintaining the same feasible vertices of the
hypercube is dependent not only on keeping certain vertices feasible
i.e., equatioas (5.1l¢), (5.1d), (5.1le) and (5.1f) but also on keeping
certain vertices infeasible, i.e., equations (5.1a). (5.1b), (5.1g)
and (5.1h). .

2) One should not inderprete the constraint generation of this
section as being the only or even the main application of theory of con=
straint equivalence classes. In [5], the concept of equivalence classes
is directly applied to a special class of O~l1 programming problems re-
sulting in not only the optimal solution but direct sensitivity analysis

on the changes in the objective function.
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